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Abstract

Bayesian Optimization (BO) is a powerful framework for optimizing expensive
black-box functions. Recent advancements in Large Language Models (LLMs)
have shown potential in enhancing BO through contextual initialization and surro-
gate modeling. However, challenges such as reliance on domain-specific knowl-
edge and sensitivity to ambiguous prompts persist. To address these limitations,
we propose BO-SCULPT, a collaborative framework that integrates Gaussian
Process (GP)-based modeling with LLMs. Leveraging GP-based predictions as
guiding instructions, BO-SCULPT employs a standardized GP-guided prompting
strategy to minimize dependency on semantic instructions, enabling robust opti-
mization without additional task-specific information. Experimental results on
standard benchmarks and controlled case studies demonstrate that BO-SCULPT
outperforms traditional GP-based BO and achieves competitive performance with
LLM-based methods relying on semantic prompts. These findings highlight its
scalability, reliability, and potential for broader optimization applications. Code is
available at https://github.com/ChangLee0903/BO-SCULPT.

1 Introduction

Bayesian Optimization (BO) is a widely used method for efficiently optimizing expensive black-box
functions in fields like robotics [1], experimental design, drug discovery, and hyperparameter tuning.
By constructing surrogate models to approximate the objective function and iteratively proposing
promising candidates using acquisition functions, BO minimizes the need for costly evaluations.
However, BO’s efficiency heavily depends on the quality of the surrogate model and the chosen prior
distributions, which, if misaligned with the true data distribution, can lead to suboptimal performance.

Recent advancements in Large Language Models (LLMs), pre-trained on vast Internet-scale datasets,
have demonstrated exceptional generalization from sparse data, making them promising for BO
tasks. Specifically, LLAMBO [2] explored LLMs for contextual initialization (warmstarting) and
surrogate modeling in BO, achieving initial success in hyperparameter tuning without predefined
priors. Despite its promise, LLAMBO encounters two key challenges:

1. Dependency on Extensive Domain-Specific Knowledge: The current framework requires de-
tailed task-specific information, such as feature attributes and task descriptions, as prompt contexts.
For instance, in hyperparameter optimization, prompts need to include training dataset details
and model setup specifications to encode prior knowledge for exploration bonuses. This reliance
restricts scalability to broader domains, especially in high-dimensional scenarios or complex tasks
that are difficult to describe concisely in natural language.

2. Language Ambiguity and Lack of Robustness: Unlike conventional BO methods such as
Gaussian Process (GP)-based approaches [3], in-context learning (ICL) [4, 5] heavily depends on
prompt content, making it difficult to quantify the influence of prompts on the agent’s behavior.
Natural language instructions are prone to ambiguity, resulting in inconsistent effectiveness.
Moreover, LLMs are easily misled by initial samples, often producing trivial or random solutions.
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While LLAMBO performs well on standard benchmarks, its effectiveness lacks theoretical support
without prior knowledge, undermining robustness and convergence reliability.

These challenges highlight the need for further refinement to enhance the scalability and robustness of
LLM-based BO frameworks. Instead of heavily relying on domain-specific knowledge and empirical
results, a simple GP model can act as an "automatic instructor," concisely delivering task information
by predicting the mean and variance of given samples. This forms a unified prompting strategy
applicable across diverse tasks without language ambiguity, significantly reducing the effort required
for prompt design. By simplifying the original formulation, this approach shifts the focus to designing
a collaborative learning scheme between the LLM and the instructor BO model. Intuitively, the
instructor BO model serves as both a "planner" and a "regularizer," converting task samples into a
"standardized" instruction format. This eliminates the dependency on domain-specific prompts while
effectively addressing uncertainties, paving the way for a more generalizable and robust framework.

These challenges highlight the need for further refinement to enhance the scalability and robustness
of LLM-based BO frameworks. Instead of heavily relying on domain-specific knowledge, a simple
GP model can act as an "automatic instructor," concisely delivering task information by predicting
the mean and variance of given samples. This forms a unified prompting strategy applicable across
diverse tasks without language ambiguity, significantly reducing the effort required for prompt design.
By simplifying the original formulation, this approach shifts the focus to designing a collaborative
learning scheme between the LLM and the instructor BO model. Intuitively, the instructor BO
model serves as both a "regularizer" and a "planner," converting task samples into a "standardized"
instruction format.

In this paper, we propose a Bayesian Optimization framework with Scalable Collaborative Unification
of LLM and GP Techniques (BO-SCULPT). The GP model serves as both a sampling filter and
a prompting provider, supporting ICL within the LLM. By leveraging a constrained optimization
formulation, the GP model acts as an instructor to guide and enforce robust ICL optimization,
reducing reliance on domain-specific prompts. This integration ensures convergence, simplifies
prompt design, and enhances performance consistency by harnessing the complementary strengths of
GP and LLM-based BO.

We evaluated our method on a subset of the Bayesmark benchmark and conducted ablation studies to
assess its robustness in addressing local maxima and sensitivity to initialization. Results show that our
framework outperforms standalone GP and LLAMBO models without semantic information, while
achieving comparable performance to LLAMBO with semantic prompts. These findings demonstrate
its potential to streamline prompt design while maintaining robust performance across diverse tasks.

2 Preliminaries

Bayesian Optimization (BO) is a sequential strategy for globally optimizing black-box objective
functions without assuming specific functional forms. BO iteratively constructs a surrogate model to
approximate the objective function and proposes candidate points for evaluation. In this work, BO is
framed as a one-step decision-making process, treating the BO model as a policy π that generates h,
enabling explicit comparisons between algorithms. The goal is to identify a policy π such that h ∼ π
maximizes f :

π∗ = argmax
π

f(π),

where f is a costly black-box function with inaccessible gradients. BO relies on two key components
to approximate f :

• A surrogate model, pπt (s|h;Dt), which estimates f(h) and its uncertainty.

• A candidate sampler, pπt (h|Dt), which proposes new inputs by balancing exploration and ex-
ploitation.

Together, these components define the policy π, enabling iterative updates to generate promising
candidates.

Gaussian Process Regression (GP) [3]: GP regression is a popular choice for BO due to its ability
to model both the objective function and associated uncertainties. At each iteration t, the GP models
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f(h) as a Gaussian distribution parameterized by a mean µt(h) and a standard deviation σt(h):

pGP
t (s|h;Dt) = N (µt(h), σ

2
t (h)).

BO leverages acquisition functions, such as Expected Improvement (q-EI) [6, 7], to estimate the
potential for improvement. Candidate points {h̃i}qi=1 are sampled from pEI

t (h|Dt), and the best
candidate is evaluated to update the model.

LLAMBO [2]: LLAMBO integrates LLMs into BO by leveraging their contextual understanding
and prior knowledge. Unlike traditional BO methods relying on predefined priors, LLAMBO
dynamically incorporates optimization history as few-shot examples through in-context learning
(ICL). LLAMBO enhances two core components:

• Candidate Sampling: LLAMBO generates K candidate points {h̃k}Kk=1 conditionally sampled
based on a target objective value s′: h̃k ∼ pLLM

t (h|s′;Dt).

• Surrogate Modeling: The surrogate model pLLM
t (s|h;Dt) approximates f using Dt. LLAMBO

introduces two approaches: a discriminative method for regression with uncertainty estimates and
a generative method scoring predictions via binary classification.

A key limitation of LLAMBO lies in its reliance on task-specific instructions (Task Instructions),
which restricts scalability and adaptability across diverse problem domains. These instructions
demand substantial domain knowledge and meticulous prompt engineering, making the approach
impractical for tasks with ambiguous or poorly defined contexts. To overcome this limitation, we aim
to propose a simplified and task-agnostic framework that streamlines prompt design while enhancing
usability and generalizability across a wider range of optimization tasks.

3 Method: GP-BO as an Automatic Instructor and Regularizer

3.1 Key Insight: Leveraging ICL with Constraints

Natural language instructions can be ambiguous, leading to inconsistent optimization performance.
Additionally, crafting task-specific prompts often requires significant domain knowledge and effort.
To address these limitations while utilizing the contextual understanding capabilities of LLMs, we
propose incorporating a lightweight GP-BO model as a baseline constraint and optimization guide.
This approach formalizes the optimization process as:

πLLM
t+1 ← argmax

πLLM
f(πLLM) subject to f(πLLM) ≥ f(πGP

t ), (1)

where the GP-BO model serves two key roles:

• Stabilizing Optimization: Under theoretical assumptions, the GP model provides a error bound,
ensuring convergence to at least a local maximum [8, 7, 9, 10].

• Mitigating Ambiguity: GP predictions can provide unified but informative guidance to reduce re-
liance on ambiguous language instructions, guiding LLM decisions more concisely and effectively.

This collaboration harnesses the robustness of GP-BO to enhance LLMs’ exploratory capabilities.
However, implementing this optimization is non-trivial due to the dynamic interplay between πGP

and πLLM, both of which evolve iteratively. Detailed solutions to these challenges are provided in
Sections 3.2.

3.2 Algorithm: Bayesian Optimization with Scalable Collaborative Unification of LLM and
GP Techniques (BO-SCULPT)

The proposed algorithm addresses the constrained optimization problem in Eq. 1, combining GP-BO
and LLMs into a unified framework:

1. GP-Guided Prompting: The GP model provides concise statistical summaries to guide LLMs
in candidate selection. At iteration t, for a given sample h, the GP model estimates:
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• The mean µt(h) and standard deviation σt(h), which define the predicted range of the objective
function [µt(h)− σt(h), µt(h) + σt(h)].

• Statistical trends from observations, represented as OGP
t = {(h, s, µt(h), σt(h))}, summarizing

f(h) across the dataset Dt.

These summaries are translated into concise task instruction prompts IGP
t , enabling the LLM to

balance exploration and exploitation effectively when generating candidate solutions. For the
complete content of IGP

t , please refer to Appendix A.

2. Threshold Filtering: To ensure robust performance, this strategy imposes a hard constraint by
retaining only LLM-generated candidates h satisfying:

µt(h) + σt(h) ≥ max
h∈H

µt(h).

This filtering ensures adherence to the GP-BO model’s theoretical convergence guarantees while
mitigating the risk of suboptimal solutions [8, 7, 9, 10]. For detailed derivations of the convergence
analysis, please refer to Appendix B.

The algorithm iteratively integrates GP-guided insights and LLM’s generative capabilities to propose
and evaluate candidates, as detailed below.

Algorithm 1 Bayesian Optimization with Scalable Collaborative Unification of LLM and GP Tech-
niques (BO-SCULPT)

Require: Objective function f(h), initial dataset D0 = {(hi, f(hi))}ni=1, GP-BO model πGP, LLM
agent πLLM, number of iterations T

Ensure: Optimized solution h∗

1: Initialize: Fit GP-BO model πGP with D0

2: for t = 1 to T do
3: GP-Guided Prompting:
4: Use πGP to compute:
5: (a) PredictionsHGP

t = {(h, µt(h), σt(h))}h for query samples h
6: (b) Observed trends OGP

t = {(h, s, µt(h), σt(h)) | (h, s) ∈ Dt}
7: (c) Prompt instructions IGP

t summarizingHGP
t and OGP

t
8: LLM Candidate Generation:
9: Generate candidates H̃LLM

t using:

H̃LLM
t ← h̃k ∼ pLLM

t (h|s′;Dt, IGP
t )

10: Threshold Filtering:
11: Filter candidates:

HLLM
t = {h ∈ H̃LLM

t | µt(h) + σt(h) ≥ max
h∈H

µt(h)}

12: Sample Evaluation:
13: Merge candidatesHt = HGP

t ∪HLLM
t

14: Select h′ and evaluate f(h′):

Dt+1 ← Dt ∪ {(h′, f(h′))}

15: Model Updates:
16: Update πGP and πLLM using Dt+1

17: end for
18: Return: h∗ = argmaxh∈DT

f(h)

4 Experiments

We evaluate the effectiveness of BO-SCULPT by leveraging the predictions of the GP-BO model
as instructions, without relying on domain-specific guidance. The evaluation consists of two parts:
benchmark results and case studies.
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1. Benchmark Results: The goal is to compare the performance of BO-SCULPT on standard
datasets (where the objective function and global maximum are unknown) against LLAMBO,
which is trained using semantic instructions.

2. Case Studies: This involves designing specific scenarios with a known objective function (where
the global maximum is explicitly known). The aim is to observe the behavior of the BO model in
these controlled environments to enable deeper analysis and insights.

4.1 Benchmark results

The experiments are conducted on a subset of Bayesmark using two datasets, digits and wine, and
three models: MLP_SGD, AdaBoost, and RandomForest. Each setup is run with 5 different random
seeds, where each seed includes the same initial samples to ensure consistency.

Evaluation Metric: Normalized Regret To measure performance, we adopt simple regret as the
primary metric. Normalized regret focuses on the best-observed performance after T iterations of the
tuning process. It evaluates how close the method gets to the global optimum f∗, and is defined as:

RT =
f∗ −maxi∈{1,...,T} f(hi)

f∗ − fmin

where:

• f∗: True global optimum of the objective function.
• fmin: Observed minimum value of the objective function across all methods.
• f(hi): Observed value of the objective function at the i-th hyperparameter configuration hi.
• T : Total number of iterations.

Baselines We implement BO-SCULPT based on LLAMBO [2] and compare it with the following
baselines:

• LLAMBO-WIS (with semantic instruction): The original LLAMBO trained using the best
setups, with task-specific semantic instructions. Prompts for this setup are detailed in their paper.
We use the discriminative version of the surrogate model for comparison.

• LLAMBO-WOS (without semantic instruction): This baseline removes access to all task-specific
information, including model types, dataset details, and configuration descriptions.

• GP-BO: A standard GP-BO implementation using the qEI acquisition function [6]. Details of this
baseline are provided in the submitted codebase.

In addition, we conduct an ablation study by removing the Threshold Filtering mechanism in the
collaborative GP-based instructor to evaluate whether the LLM agent can independently make
decisions purely based on GP-Guided Prompting. This variant is referred to as BO-SCULPT-WOF
(without filtering).

To ensure no additional semantic information interferes, other LLM methods, besides the original
LLMABO with full context, omit all domain-specific information. For example, in the prompt,
dataset-related details are excluded, and placeholders like {model}, {task}, and {metric} are replaced
with generic terms such as "a model," "a task," and "a metric." Additionally, feature names such as
"max_depth," "max_features," and "min_impurity_decrease" are anonymized as "X0," "X1," and
"X2." For the detailed prompt examples for surrogate and candidate sampler models, please refer to
Appendix A.

Results The results presented in Figure 1 highlight the comparative performance of various Bayesian
Optimization (BO) models. Specifically, LLM-based BO models trained without domain-specific
guidance (LLAMBO-WOS) generally underperform compared to those incorporating prior knowl-
edge, such as predefined distributions (GP-BO) or semantic instructions (LLAMBO-WIS). Both BO-
SCULPT and BO-SCULPT-WOF demonstrate significant improvements over GP-BO and LLAMBO-
WOS. This performance advantage arises from their ability to effectively utilize GP-guided prompting,
thereby overcoming limitations associated with discrepancies between real-world data and predefined
GP distributions.
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Figure 1: Performance of BO-SCULPT evaluated on the Bayesmark subset.

Consequently, BO-SCULPT and BO-SCULPT-WOF deliver robust optimization, maintaining a
strong balance between exploration and exploitation during the optimization process. Interestingly,
BO-SCULPT-WOF slightly outperforms BO-SCULPT when the number of observations exceeds 20.
This suggests that GP-Guided Prompting is a pivotal factor in driving performance and highlights the
LLMs’ ability to effectively interpret and act on instructions derived from GP-based models.

Furthermore, the overlapping confidence intervals between BO-SCULPT, BO-SCULPT-WOF, and
LLAMBO-WIS (approximately 50% overlap) indicate that BO-SCULPT achieves comparable perfor-
mance to LLAMBO-WIS in certain scenarios. This finding underscores BO-SCULPT’s scalability,
its potential for further refinement, and its versatility in addressing a broad range of optimization
tasks.
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Figure 2: (a) Case I: one-dimensional smooth and concave function with 15 noisy initial samples. (b)
Case II: one-dimensional smooth function with two maxima, which are at -0.36 and 1.33, respectively.

4.2 Case Studies

In this section, we utilize prior knowledge of the function’s structure and the position of the global
maximum to assess the performance of the models more effectively. Since these case studies
focus on objective function optimization rather than hyperparameter tuning, semantic information is
unavailable, and comparisons do not include LLAMBO-WIS. Specifically, we measure the minimum
distance between the observed position of the maximum sample and the true global maximum. To
ensure consistency and reproducibility, all experiments are repeated with 5 different random seeds.
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Figure 3: (a) Regret curves evaluated on Case I. (b) Distance between current observed maximum
and the global maximum evaluated on Case I.

4.2.1 Case I: Can a LLM-based BO model be misled by initial samples?

Setup: To evaluate the influence of initial sample placement, we constructed a one-dimensional
smooth function with 15 noisy initial samples positioned between 0.15 and 0.25, as shown in
Figure 2(a). Noise of a defined scale was introduced at each iteration. Compared to other experiments,
the use of 15 initial samples represents a significantly larger starting set. This setup allows us to
investigate the impact of initial sample quantity on the behavior of LLM-based BO models. The
global maximum, located at 0, should be readily attainable if the BO model possesses sufficient
exploration and denoising capabilities.

Results: Figure 3 shows that the performance in terms of regret curve or the distance to the global
maximum is significantly worse for LLAMBO-WOS compared to GP and BO-SCULPT. It is
noteworthy that the regret and distance curves for LLAMBO-WOS remain nearly horizontal after
the initial phase, indicating that it quickly stops exploring, even though the global maximum is
close. This suggests that LLAMBO-WOS is heavily influenced by the initial samples and lacks
the ability to escape local regions effectively. In contrast, GP successfully converges to the global
maximum within a few iterations, demonstrating its strong exploration and optimization capabilities.
BO-SCULPT and BO-SCULPT-WOF exhibit a similar trend, leveraging the guidance from GP-BO to
ensure robust optimization and achieve competitive results. The collaboration between BO-SCULPT
and the GP-BO instructor likely contributes to its resilience in overcoming the challenges posed by
noisy initialization. Notably, BO-SCULPT-WOF’s performance suggests that LLMs are capable of
capturing and independently executing exploration strategies derived from GP-based prompting, even
without stringent filtering rules.

Moreover, the shaded confidence intervals in Figure 3 reveal critical differences in model behavior.
GP and BO-SCULPT display broader intervals during the early stages, reflecting variability in their
exploratory phases. However, their intervals narrow significantly as the models stabilize at lower
regret values, indicating reliable convergence to the global maximum. In contrast, LLAMBO-WOS
maintains a narrower confidence interval throughout, but its consistently suboptimal performance
highlights its limited exploration and adaptability. These observations underscore the importance of
robust exploration mechanisms and effective denoising capabilities, particularly in scenarios involving
large initial sample sets. The superior performance of GP and BO-SCULPT emphasizes their ability
to overcome the limitations imposed by noisy initial conditions, achieving reliable convergence to the
global maximum.

4.2.2 Case II: Can a LLM-based BO model converge to the global maximum instead of a local
maximum?

Setup: To validate the ability of different models to distinguish between local and global maxima,
we constructed a one-dimensional smooth function with two maxima, as illustrated in Figure 2(b),
and introduced noise of a defined scale at each iteration. The global maximum is located at −0.36,
while a local maximum is present at 1.33.
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Figure 4: (a) Regret curves evaluated on Case II. (b) Distance between current observed maximum
and the global maximum evaluated on Case II.

Results: Figures 4(a) and 4(b) highlight the performance differences among the models. The distance
curves reveal that LLAMBO-WOS exhibits significant variability, failing to converge to the global
maximum in some instances. This inconsistency underscores its limited exploration and optimization
capacity. In contrast, the GP-BO model demonstrates robust performance, consistently converging
to the global maximum across all seeds. BO-SCULPT mirrors the trends of GP-BO, showcasing
comparable exploration and denoising capabilities. These results further affirm that incorporating GP-
guided prompting enhances the model’s ability to navigate complex optimization landscapes. Overall,
the consistent performance of GP-BO and BO-SCULPT highlights their reliability in scenarios
with multiple optima, while LLAMBO-WOS’s limitations indicate room for improvement in its
exploration mechanisms.

5 Conclusion & Discussion

In this paper, we introduced BO-SCULPT, a scalable and robust framework that combines GP-based
Bayesian Optimization (BO) with the generative capabilities of LLMs. Our approach addresses
key challenges faced by existing LLM-based BO frameworks, such as reliance on domain-specific
prompts and susceptibility to noisy initializations. By incorporating GP-guided prompting and
threshold filtering, BO-SCULPT delivers consistent performance across diverse optimization tasks
without requiring extensive task-specific information. Through comprehensive experiments, we
demonstrated that BO-SCULPT effectively handles noisy initial samples and multiple local optima,
showcasing its robustness and adaptability. Its comparable performance to semantic instruction-driven
LLMs underscores the framework’s ability to bridge the gap between conventional GP-based methods
and modern LLM-enhanced BO strategies.

Looking forward, LLMs present transformative opportunities to extend BO into domains characterized
by high-dimensional and complex data, such as multi-modal media. LLMs possess the potential to
capture, understand, and summarize these intricate features, transforming raw data into informative
low-dimensional representations that conventional BO methods can process. In turn, BO can provide
structured guidance and feedback, enabling iterative refinement and exploration. This collaborative
synergy could unlock optimization capabilities for tasks previously infeasible with traditional BO
strategies. If we expand our perspective even further, the integration of LLMs and BO could
revolutionize the learning paradigm. By generalizing the optimization of models through BO, the
reliance on supervised learning could diminish, paving the way for more autonomous, adaptive, and
efficient learning systems. The vision of optimizing raw data directly without intermediate training
steps could redefine the landscape of machine learning and its applications.

6 Related Works

Bayesian Optimization. Bayesian Optimization (BO) has been widely utilized for the optimization
of expensive black-box functions. Traditional methods, such as GP-based BO, leverage the flexibility
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and analytical tractability of GPs to model surrogate functions [11]. Recent works have extended these
approaches with deep kernel GPs [12] and neural network-based surrogates to enhance scalability in
high-dimensional spaces [13]. Acquisition functions such as Expected Improvement (EI) and Upper
Confidence Bound (UCB) have also been explored for efficient candidate selection [7]. Additionally,
Tree-structured Parzen Estimator (TPE) methods offer generative surrogate models for more diverse
applications [14]. While these approaches are effective, they rely heavily on predefined priors, which
may not align with the true data distribution, limiting their adaptability to diverse tasks.

Transfer Learning for BO. Recent advances in transfer learning have aimed to improve BO
performance across related domains. Multitask GPs, for instance, leverage shared structures between
tasks to transfer optimization knowledge [15]. Meta-learning frameworks such as neural processes
and Transformers have also been employed to generalize BO across heterogeneous tasks [16, 17].
Despite their success, these methods often require significant task-specific information or inductive
biases, limiting their applicability to broader domains. In contrast, our proposed framework avoids
task-specific assumptions, utilizing GP-guided prompting and the generalization capabilities of LLMs
to achieve scalability and robustness.

LLMs and Optimization. The integration of LLMs into optimization tasks has garnered recent
attention. LLMs have been employed for prompt-based optimization [2], genetic algorithm operations
[18], and surrogate modeling in domains like molecular optimization [19]. However, many existing
methods rely on semantic prompts that require extensive domain knowledge and are prone to
ambiguities. Unlike these methods, BO-SCULPT minimizes the dependency on semantic prompts
by introducing GP-guided instruction, ensuring robust performance even in the absence of task-
specific details. Additionally, our approach demonstrates the potential for LLMs to bridge gaps in
high-dimensional, noisy, or sparse-data settings by complementing traditional BO methods.

Collaborative Optimization Frameworks. The synergy between different optimization paradigms,
such as GP and LLM-based methods, is an emerging area of research. Collaborative frameworks
that combine complementary strengths have been explored in areas like hybrid optimization [20]
and reinforcement learning with Bayesian inference [21]. Our work builds on this by systematically
unifying GP-based BO and LLMs into a scalable framework, providing robust performance across
diverse tasks while simplifying prompt design.

Constrained Bayesian Optimization: Constrained Bayesian Optimization extends traditional BO
frameworks to handle problems where the feasible region is defined by explicit or implicit constraints.
Methods like constrained GP-based BO [22] leverage surrogate models for both the objective function
and the constraints, optimizing acquisition functions within the feasible region. Recent advancements
explore integrating high-dimensional data and non-linear constraints into the optimization process.
For instance, methods incorporating deep learning into BO enable the handling of complex constraint
representations [23]. These approaches are particularly relevant in real-world scenarios, such as
hyperparameter tuning [3] and engineering design [24], where constraint satisfaction is critical.
The collaborative framework introduced in this work can naturally incorporate constraints through
GP-guided prompting, enabling a more versatile optimization process.
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A Complete Prompt Details

Each performance (S) is variable through sampling and estimated in terms of mean (S_avg),
minimum (S_min), and maximum (S_max). Here are some collected samples:
- X0: {configuration number}, X1: {configuration number}, X2: {configuration number}. . . ,
S: {observed performance}, S_avg: {µ(h)}, S_min: {µ(h)− σ(h)}, S_max: {µ(h) + σ(h)}
- X0: {configuration number}, X1: {configuration number}, X2: {configuration number}. . . ,
S: {observed performance}, S_avg: {µ(h)}, S_min: {µ(h)− σ(h)}, S_max: {µ(h) + σ(h)}
. . .

Here are some predictions of uncollected options without observed performances:
- X0: {configuration number}, X1: {configuration number}, X2: {configuration number}. . . ,
S_avg: {µ(h)}, S_min: {µ(h)− σ(h)}, S_max: {µ(h) + σ(h)}
- X0: {configuration number}, X1: {configuration number}, X2: {configuration number}. . . ,
S_avg: {µ(h)}, S_min: {µ(h)− σ(h)}, S_max: {µ(h) + σ(h)}
. . .

Figure 5: Prompt from GP-BO model’s instruction IGP
t .

The following are hyperparameter configurations for a model and the corresponding perfor-
mance measured in a metric. Your response should only contain the predicted a metric in the
format ## performance ##.
Hyperparameter configuration: X0 is 100, X1 is 2.6584 Performance: ## 0.937192 ##
Hyperparameter configuration: X0 is 31, X1 is 0.0096 Performance: ## 0.929557 ##
Hyperparameter configuration: X0 is 45, X1 is 0.2232 Performance: ## 0.922167 ##
Hyperparameter configuration: X0 is 100, X1 is 4.6003 Performance: ## 0.929557 ##
Hyperparameter configuration: X0 is 94, X1 is 1.7043 Performance: ## 0.861330 ##

Figure 6: Prompt example for discriminative surrogate model.

The following are examples of performance of a model measured in a metric and the corre-
sponding model hyperparameter configurations. The allowable ranges for the hyperparameters
are:
- X0: [10, 100] (int)
- X1: [0.0001, 10.0000] (float, precise to 4 decimals)
Recommend a configuration that can achieve the target performance of 0.975000. Do not
recommend values at the minimum or maximum of allowable range, do not recommend
rounded values. Recommend values with highest possible precision, as requested by the
allowed ranges. Your response must only contain the predicted configuration, in the format
## configuration ##.
Performance: 0.922906 Hyperparameter configuration: ## X0: 100, X1: 2.5157 ##
Performance: 0.626847 Hyperparameter configuration: ## X0: 33, X1: 0.0001 ##
Performance: 0.936700 Hyperparameter configuration: ## X0: 100, X1: 2.2150 ##
Performance: 0.886946 Hyperparameter configuration: ## X0: 100, X1: 5.0000 ##
Performance: 0.975000 Hyperparameter configuration:

Figure 7: Prompt example for candidate sampling.

12



B Theoretical Analysis: Convergence Guarantee

1. Decomposition of Regret: The cumulative regret RT is defined as:

RT =

T∑
t=1

∆t =

T∑
t=1

(f(h∗)− f(ht)) ,

where h∗ is the global maximum, ht is the selected point at iteration t, and ∆t = f(h∗)− f(ht) is
the instantaneous regret.

2. GP Approximation Error: From Srinivas et al. (2010) [8], the posterior error in predicting f(h)
is bounded with high probability:

|f(h)− µt(h)| ≤ β
1
2
t σt(h), ∀h ∈ H,

where:

• µt(h): Posterior mean at iteration t,
• σt(h): Posterior standard deviation,
• βt: Confidence parameter, typically βt = O(log t).

3. Substituting Bounds into ∆t: The instantaneous regret ∆t is expressed as:

∆t = f(h∗)− f(ht).

Adding and subtracting µt(h
∗) and µt(ht), and applying the triangle inequality:

∆t ≤ |f(h∗)− µt(h
∗)|+ |µt(h

∗)− µt(ht)|+ |µt(ht)− f(ht)|.

Using the GP error bound:
|f(h)− µt(h)| ≤ β

1
2
t σt(h),

we have:
∆t ≤ β

1
2
t σt(h

∗) + |µt(h
∗)− µt(ht)|+ β

1
2
t σt(ht).

4. Incorporating Threshold Filtering: The Threshold Filtering strategy 3.2 ensures that the selected
point ht satisfies:

µt(ht) + σt(ht) ≥ max
h∈H

µt(h) ≥ µt(h
∗),

where h∗ is the point that maximizes the true objective function f(h), i.e., h∗ = argmaxh∈H f(h).
Importantly, h∗ may not maximize the posterior mean µt(h) due to the approximation nature of the
Gaussian Process model.

The term maxh∈H µt(h) represents the maximum of the posterior mean, which can be computed in
closed form from the GP model. Threshold Filtering ensures that the selected point ht satisfies:

µt(ht) ≥ µt(h
∗)− σt(ht),

where σt(ht) accounts for the uncertainty at ht. Substituting this relationship into the regret decom-
position:

|µt(h
∗)− µt(ht)| ≤ σt(ht).

The instantaneous regret ∆t can then be bounded as:

∆t ≤ β
1
2
t σt(h

∗) + σt(ht) + β
1
2
t σt(ht).

Simplifying terms involving σt(ht):

∆t ≤ β
1
2
t σt(h

∗) + (1 + β
1
2
t )σt(ht).

5. Cumulative Regret: The cumulative regret RT over T iterations is:

RT =

T∑
t=1

∆t.
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Substituting the bound for ∆t:

RT ≤
T∑

t=1

[
β

1
2
t σt(h

∗) + (1 + β
1
2
t )σt(ht)

]
.

Using results from Gaussian Process optimization:

• The uncertainty at the global maximizer h∗ satisfies:

T∑
t=1

σt(h
∗) ≤

√
TγT ,

where γT is the maximum information gain over T iterations.
• Similarly, for the selected points ht:

T∑
t=1

σt(ht) ≤
√

TγT .

• The confidence parameter βt grows as O(log t), so β
1
2
t = O(

√
log t).

Substituting these bounds into the cumulative regret:

RT ≤
√
TγT ·O(

√
log T ) +

√
TγT · (1 +O(

√
log T )).

6. Final Bound: Combining terms and simplifying:

RT = O(
√
TγT log T ),

where γT = O(log T ) for common kernels like the squared exponential or Matérn.

This result guarantees sublinear cumulative regret, ensuring the convergence of the optimization
process as T →∞.
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